Maximal S-Free Convex Sets and the Helly Number

نویسندگان

  • Michele Conforti
  • Marco Di Summa
چکیده

Given a subset S of R, the Helly number h(S) is the largest size of an inclusionwise minimal family of convex sets whose intersection is disjoint from S. A convex set is S-free if its interior contains no point of S. The parameter f(S) is the largest number of maximal faces in an inclusionwise maximal S-free convex set. We study the relation between the parameters h(S) and f(S). Our main result is that h(S) ≤ (d+ 1)f(S) for every nonempty proper closed subset S of R. We also study the Helly number of the Cartesian product of two discrete sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Maximal S-Free Sets and the Helly Number for the Family of S-Convex Sets

We study two combinatorial parameters, which we denote by f(S) and h(S), associated with an arbitrary set S ⊆ Rd, where d ∈ N. In the nondegenerate situation, f(S) is the largest possible number of facets of a d-dimensional polyhedron L such that the interior of L is disjoint with S and L is inclusion-maximal with respect to this property. The parameter h(S) is the Helly number of the family of...

متن کامل

Helly theorems for 3-Steiner and 3-monophonic convexity in graphs

A family C of sets has the Helly property if any subfamily C′, whose elements are pairwise intersecting, has non-empty intersection. Suppose C is a non-empty family of subsets of a finite set V . The Helly number h(C) of C is the smallest positive integer n such that every subfamily C′ of C with |C′| ≥ n and which intersects n-wise has non-empty intersection. In this paper we consider the famil...

متن کامل

Convex sets in graphs, II. Minimal path convexity

A set K of vertices in a connected graph is M-convex if and only if for every pair of vertices in K, all vertices of all chordless paths joining them also lie in K. Carathtodory, Helly and Radon type theorems are proved for M-convex sets. The Caratheodory number is 1 for complete graphs and 2 for other graphs, The Helly number equals the size of a maximum clique. The Radon number is one more th...

متن کامل

Minimal Inequalities for an Infinite Relaxation of Integer Programs

We show that maximal S-free convex sets are polyhedra when S is the set of integral points in some rational polyhedron of R. This result extends a theorem of Lovász characterizing maximal lattice-free convex sets. We then consider a model that arises in integer programming, and show that all irredundant inequalities are obtained from maximal S-free convex sets. 1 Maximal S-free convex sets Let ...

متن کامل

On Maximal S-free Convex Sets

Let S ⊆ Zn satisfy the property that conv(S) ∩ Zn = S. Then a convex set K is called an S-free convex set if int(K) ∩ S = ∅. A maximal S-free convex set is an S-free convex set that is not properly contained in any S-free convex set. We show that maximal S-free convex sets are polyhedra. This result generalizes a result of Basu et al. [6] for the case where S is the set of integer points in a r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2016